
Relativistic tunneling and accelerated transmission

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 215302

(http://iopscience.iop.org/1751-8121/41/21/215302)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/21
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 215302 (7pp) doi:10.1088/1751-8113/41/21/215302

Relativistic tunneling and accelerated transmission

A E Bernardini

Instituto de Fı́sica Gleb Wataghin, UNICAMP, PO Box 6165, 13083-970 Campinas, SP, Brazil

E-mail: alexeb@ifi.unicamp.br

Received 1 February 2008, in final form 3 April 2008
Published 6 May 2008
Online at stacks.iop.org/JPhysA/41/215302

Abstract
We obtain the solutions for the tunneling zone of a one-dimensional electrostatic
potential in the relativistic (Dirac to Klein–Gordon) wave equation regime
when the incoming wave packet exhibits the possibility of being almost totally
transmitted through the potential barrier. The conditions for the occurrence of
accelerated and, eventually, superluminal tunneling transmission probabilities
are all quantified and the problematic superluminal interpretation originated
from the study based on non-relativistic dynamics of tunneling is reevaluated.
The treatment of the problem suggests revealing insights into condensed-matter
experiments using electrostatic barriers in single- and bi-layer graphenes, for
which the accelerated tunneling effect deserves a more careful investigation.

PACS numbers: 03.65.Xp, 03.65.Pm, 73.40.Gk

Finding a definitive interpretation for the nature of superluminal barrier tunneling has brought
up a fruitful discussion in the literature [1–5] since pulses of light and microwaves appear
to tunnel through a barrier at speeds faster than a reference pulse moves through a vacuum
[6–9]. Tunneling occurs when a wave impinges on a thin barrier of opaque material and some
small amount of the wave leaks through to the other side. The superluminal experiments that
promoted the controversial discussions were performed with a lattice of layers of transparent
and opaque materials arranged so that waves of some frequencies are reflected (through
destructive interference) but other frequencies pass through the lattices in a kind of filter effect
correlated to the Hartman effect [10].

In all cases described by the non-relativistic (Schrödinger) dynamics [5], the pulse (wave
packet) that emerges from the tunneling process is greatly attenuated and front-loaded due to
the filter effect (only the leading edge of the incident wave packet survives the tunneling process
without being severally attenuated to the point that it cannot be detected). If one measures
the speed by the peak of the pulse, it looks faster than the incident wave packet. Since the
transmission probability depends analytically on the momentum component k (T ≡ T (k)),
the initial (incident wave) momentum distribution can be completely distorted by the presence
of the barrier of potential. As there is no sharp beginning to a pulse, we cannot declare the
instant of its arrival at a certain point. Thus the computation of the tunneling time becomes
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fundamentally meaningless. We could only watch the rising edge of the pulse and try to
recognize what is arriving [2].

By employing a tunneling dynamics described by a relativistic wave equation we can
reevaluate the most part of these difficulties. In this scenario, the existence of formal analogies
between the barrier tunneling of the pulses of light and the tunneling transmission of relativistic
particles allows for a close correspondence between quantum relativistic motions described
by the Klein–Gordon equation and electromagnetic wave propagations in the presence of
dissipation [11]. Here, we demonstrate with complete mathematical accuracy that, in some
limiting cases of the relativistic (Klein) tunneling phenomena where the relativistic kinetic
energy is approximately equal to the potential energy of the barrier, and mcL/h̄ � 1, particles
with mass m can pass through a potential barrier V0 of width L with transmission probability
T approximately equal to 1. Since T ∼ 1, the analytical conditions for the stationary
phase principle applicability which determines the tunneling (phase) time for the transmitted
wave packets are totally recovered. Differently from the previous (non-relativistic) tunneling
analysis, the original momentum distribution is kept undistorted and there is no filter effect.
The tunneling time is then computed for a completely undistorted transmitted wave packet,
which legitimizes any eventual accelerated transmission.

Some authors consider difficult and perhaps confusing the treatment of all interactions
of plane waves or wave packets with a barrier potential using a relativistic wave equation
[12–15]. This is because the physical content depends upon the relation between the barrier
height V0 and the mass m of the incoming (particle) wave, besides its total energy E. In the
first attempt to evaluate this problem, Klein [16] considered the reflection and transmission of
electrons of incidence energy E on the potential step V (x) = �(x)V0 in the two-dimensional
time-independent Dirac equation which can be represented in terms of the usual Pauli matrices
[17] by1

[σ 3σ i∂i − (E − �(x1)V0) − σ 3m]φ(k, x1, x2) = 0, (from this point c = h̄ = 1), (1)

which corresponds to the reduced representation of the usual Pauli–Dirac gamma matrix
representation (i = 1, 2). The physical essence of such a theoretical configuration lies in
the prediction that fermions can pass through large repulsive potentials without exponential
damping. It corresponds to the so-called Klein tunneling phenomenon [13] which follows
accompanied by the production of a particle–antiparticle pair inside the potential barrier. It is
different from the usual tunneling effect since it lies in the energy zone of the Klein paradox
[16, 17]. Taking the quadratic form of the above equation reduced to one dimension for a
generic scalar potential V (x), we obtain the analogous Klein–Gordon equation,

(i∂0 − V (x))2 φ(k, x) = (E − V (x))2 φ(k, x) = (−∂2
x + m2) φ(k, x), (2)

which, from the mathematical point of view, due to the second-order spatial derivatives, has
similar boundary conditions to those of the Schrödinger equation and leads to stationary wave
solutions characterized by a relativistically modified dispersion relation.

By depicting three potential regions by means of a rectangular potential barrier
V (x), V (x) = V0 if 0 � x � L, and V (x) = 0 if x < 0 and x > L, we observe that the incident
energy can be divided into three zones. Differently from the energy configuration relative to
the non-relativistic (Schrödinger) dynamics, the above barrier energy zone, E > V0 + m,
involves diffusion phenomena of oscillatory waves (particles). In the so-called Klein zone
[13, 16], E < V0 − m, we find oscillatory solutions (particles and antiparticles) in the barrier
region. In this case, antiparticles see an opposite electrostatic potential to that seen by the
particles and hence they will ‘see’ a potential well where the particles ‘see’ a barrier [18, 19].

1 �(x) is the heavyside function.
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The tunneling zone, V0 − m < E < V0 + m, for which only evanescent waves exist [20, 21]
in the barrier region, is that of interest in this work.

By evaluating the problem for this tunneling (evanescent) zone assuming that φ(k, x) are
stationary wave solutions of equation (2), when the peak of an incident (positive energy) wave
packet reach the barrier x = 0 at t = 0, we can write

φ(k, x) =

⎧⎪⎨
⎪⎩

φ1(k, x) = exp[ikx] + R(k, L) exp[−ikx] x < 0,

φ2(k, x) = α(k) exp[−ρ(k)x] + β(k) exp[ρ(k)x] 0 < x < L,

φ3(k, x) = T (k, L) exp[ik(x − L)] x > L,

(3)

where the novel dispersion relations: k2 = E2 −m2 and ρ(k)2 = m2 −(E−V0)
2, are modified

with respect to the usual non-relativistic ones.
In order to proceed with a phenomenological analysis which allows us to establish a

correspondence with the non-relativistic (NR) solutions, it is convenient to define the kinematic
variables in terms of the following parameters: w = √

2mV0, υ = V0/m = w2/2m2 and
n2(k) = k2/w2 = ENR/V0. The parameter w corresponds to the same normalization
parameter of the usual NR analysis where k2 = 2mENR. The previously quoted relation
between the potential energy V0 and the mass m of the incident particle is given by the
parameter υ. Finally, n2(k) represents the dependence on the energy for all the results that are
being considered here. After simple mathematical manipulations, it is easy to demonstrate
that the tunneling zone for the above Klein–Gordon equation (2) is comprised by the interval
(n2(k) − υ/2)2 � 1 which made n2(k) assume larger values (n2(k) � 1), in opposition to the
NR case where the tunneling energy zone is constrained by 0 < n2(k) < 1. We shall observe
that such a peculiarity has a suitable relation with the possibility of superluminal transmission
through the barrier. The limits for NR energies (k2 � m2 and V � m) given by υn2(k) � 1
and υ/n2(k) � 1 reproduce the Schrödinger equation results for the transmission coefficient
and for the corresponding traversal time.

With regard to the standard one-way direction wave packet tunneling, for the set of
stationary wave solutions given by equation (3), it is well known [23] that the transmitted
amplitude T (n, L) = |T (n, L)| exp[iϕ(n,L)] is written in terms of

|T (n, L)| =
{

1 +
1

4n2ρ2(n)
sinh2[ρ(n)wL]

}− 1
2

, (4)

where we have suppressed from the notation the dependence on k, and

ϕ(n,L) = arctan

{
n2 − ρ2(n)

2nρ(n)
tanh[ρ(n)wL]

}
, (5)

for which we have made explicit the dependence on the barrier length L (parameter wL), and
we have rewritten ρ(k) = wρ(n), with ρ(n)2 =

√
1 + 2n2υ − (n2 − υ/2).

The additional phase ϕ(n,L) that goes with the transmitted wave is utilized for calculating
the transit time tϕ of a transmitted wave packet when its peak emerges at x = L,

tϕ = dk

dE(k)

dn(k)

dk

dϕ(n,L)

dn
= (L)

v

1

w(L)

dϕ(n,L)

dn
(6)

evaluated at k = k0 (the maximum of a generic symmetrical momentum distribution g(k −k0)

that composes the incident wave packet). By introducing the classical traversal time defined
as τ(k) = L(dk/dE(k)) = L/v, we can obtain the normalized phase time,

tϕ

τ(k)

= f (n, L)

g(n, L)
, (7)
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Figure 1. Tunneling transmission probabilities and the corresponding tunneling phase times
for the dynamics of the relativistic wave equation. We have classified the energy zones by the
line thickness: the thick line corresponds to the tunneling energy zone, the intermediate line
corresponds to the Klein zone and the thin line corresponds to the above barrier energy zone. In
fact the tunneling region is comprised by the interval intersection (n2−υ/2)2 < 1 and n2 > 0. Here
we have adopted the illustratively convenient value of wL = 2π . We have set υ = 0, 1, 2, 5, 10
and we have constrained our analysis to n2(k) > 0 since we have assumed V0 > 0. It is convenient
to observe that the NR regime can be parametrized by the limit where υ → 0.

f (n, L) = 8n2
[(

2 + 8n2υ + υ2
) − (4n2 + 3υ)

√
1 + 2n2υ

]
+ 4

[
(4 + 4n2υ + υ2)

√
1 + 2n2υ − 2υ(2 + 3n2υ)

] sinh(ρ(n)wL) cosh(ρ(n)wL)

ρ(n)wL
,

g(n, L) = 16n2
[
2(1 + 2n2υ) −

√
1 + 2n2υ(2n2 + υ)

]
+ 2

[
(4 + 8n2υ + υ2)

√
1 + 2n2υ − 4υ(1 + 2n2υ)

]
sinh(ρ(n)wL)2.

We compare the theoretical results for the tunneling phase times in correspondence
with their respective transmission probabilities in figure 1 for different propagation regimes
(υ = 0(NR), 1, 2, 5, 10)). It is important to emphasize that the tunneling region is comprised
by the interval (n2 − υ/2)2〈1, n2〉0.

We can note the possibility of accelerated (tϕ < τ(k)), and eventually superluminal
(negative tunneling delays, tϕ < 0) transmissions without recurring to the usual analysis
of the opaque limit (ρ(n)wL → ∞) which leads to the Hartman effect [10]. In the NR
dynamics (Schrödinger equation solutions), the opaque limit and its consequent superluminal
interpretation (Hartman effect) were extensively discussed in the literature. Superluminal
group velocities in connection with quantum (and classical) tunneling were predicted even
on the basis of tunneling time definitions more general than the simple Wigner’s phase time
[24] (Olkhovsky et al, for instance, discuss a simple way of understanding the problem [5]).
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Discussions on relativistic causality in addition to several analytical limitations have ruined
the most part of possibilities of superluminal interpretation of the NR tunneling phenomena
[4, 22, 23]. In a causal manner, the arguments consist in explaining the superluminal
phenomena during tunneling as simply due to a reshaping of the pulse, with attenuation,
as already attempted (at the classical limit) [25], i.e. the later parts of an incoming pulse are
preferentially attenuated, in such a way that the outcoming peak appears shifted toward earlier
times even if it is nothing but a portion of the incident pulse forward tail [7, 22].

We do not intend to extrapolate to the delicate question of whether superluminal group
velocities can sometimes imply superluminal signalling, a controversial subject which has
been extensively explored in the literature ([5] and references therein). Otherwise, the phase
time calculation based on the relativistic dynamics introduced here offers distinct theoretical
possibilities of superluminal transmission in a novel scenario, for the limit case where ρ(n)wL

tends to 0 (with L 
= 0), in opposition to the opaque limit where ρ(n)wL tends to ∞. Let us
then separately expand the numerator f (n, L) and the denominator g(n, L) of equation (7)
in a power series of ρ(n)wL (ρ(n) → 0) in order to observe that in the lower (upper) limit
of the tunneling energy zone, where n2 tends to υ/2 + (−)1, the numerical coefficient of the
zero-order term in ρ(n)wL amazingly vanish in the numerator as well as in the denominator!
Since the coefficient of the linear term also is null, just the coefficient of the second-order
terms plays a relevant role in both series expansions. After expanding equation (7), such a
step-by-step mathematical exercise leads to

tϕ

τ(k)

= 4

3

[
(4 + 4n2υ + υ2)

√
1 + 2n2υ − 2υ(2 + 3n2υ)

]
[
(4 + 8n2υ + υ2)

√
1 + 2n2υ − 4υ(1 + 2n2υ)

] + O(ρ(n)wL)2 (8)

for small values of ρ(n). At the same time, since limn2→υ/2∓1 ρ(n) = 0, the tunneling
transmission probability can be approximated by

lim
n2→υ/2∓1

|T (n, L)| =
[

1 +
(wL)2

2υ ∓ 4

]− 1
2

υ�1→ [1 + (mL)2]−
1
2 , (9)

from which we recover the high probability of complete tunneling transmission when mL � 1.
Finally, for the corresponding values of the phase times evaluated in (8), we obtain,

lim
n2→υ/2∓1

tϕ

τ(k)

= −4

3

1

1 ± 2n2
, n2 → υ/2 ∓ 1, n2, υ > 0, (10)

that does not depend on mL, and we note that its asymptotic (ultrarelativistic) limit always
converges to 0. In particular, in the lower limit of the tunneling energy zone, n2 → υ/2−1, it is
always negative. Since the result of equation (10) is exact, and we have accurately introduced
the possibility of obtaining total transmission (transparent barrier), our result ratifies the
possibility of accelerated transmission (positive time values), and consequently superluminal
tunneling (negative time values), for relativistic particles when mL is sufficiently smaller than
1 (⇒ T ≈ 1). Keeping in mind that the barrier height has to be chosen such that one remains
in the tunneling regime, it is notorious that the transmission probability depends only weakly
on the barrier height, approaching the perfect transparency for very high barriers, in stark
contrast to the conventional, non-relativistic tunneling where T (n, L) exponentially decays
with the increasing V0. Since these results can be analytically extended to the Klein paradox
energy zone, such a relativistic effect is usually attributed to a sufficient strong potential that,
being repulsive for electrons, is attractive for positrons and results in unstable positron states
inside the barrier, which align the energy with the electron continuum outside [26].

Obviously, the above results correspond to a theoretical prediction, in certain sense, not
so far from the experimental realization. By considering the magnitude of the parameter
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mL (mc2/[h̄(c/L)] in standard units) for an electron with mass ∼0.5 MeV, and observing
that in natural units we have 0.2 MeV pm ∼ 1, we conclude that it should be necessary a
potential barrier of width L � 1 pm to permit the observation of the quoted superluminal
transmission. By principle, its observation makes the effect relevant only for some exotic
situations as positron production around super-heavy nuclei (Z ∼ 170) [27] or evaporation of
black holes through generation of particle–antiparticle pairs near the event horizon [28].

In the most common sense, the above condition should be naturally expected since we are
simply assuming that the Compton wavelength (h̄/(mc)) is much larger than the length L of
the potential barrier that, in this limit situation, becomes invisible for the tunneling particle.
The relativistic quantum mechanics establishes that if a wave packet is spread out over a
distance d � 1/m, the contribution of momenta |p| ∼ m � 1/d is heavily suppressed, and
the negative energy components of the wave packet solution are negligible; the one-particle
theory is then consistent. However, if we want to localize the wave packet in a region of
space (wave packet width d) smaller than or of the same size as the Compton wavelength,
that is d < 1/m, the negative energy solutions (positron states) start to play an appreciable
role. This qualitative arguments report us to the Klein paradox and the creation of particle–
antiparticles pairs during the scattering process which might create the intrinsic (polarization)
mechanisms for accelerated and/or non-causal fermion teletransportation. The condition
d < L < 1/m (where d < L is not mandatory) imposed over a positive energy component of
the incident wave packet in the relativistic tunneling configuration excite the negative energy
modes (antiparticles) in the same way that the movement of electrons in a semi-conductor is
concatenated with the movement of positively charged holes.

Turning back to the context of the nanoscopic scale structures, the most challenging
possibility of observing similar effects occurs for massless (or effective mass) Dirac fermions
in graphene structures. Even though the linear spectrum of fermions in graphene implies zero
rest mass, their cyclotron mass approaches to 10−2me [29], which increases the superluminal
tunneling scale to 1 Å. In spite of the theoretical focus, the results here obtained apply to
some configurations which should deserve further attention by experimenters in the study of
the graphene structures where the dynamics of the electron is described by a relativistic-
like dynamics. For bi-layer structures, due to the chiral nature of their quasiparticles,
quantum tunneling in these materials becomes highly anisotropic, qualitatively different
from the case of normal, non-relativistic electrons. In fact, it has been recently speculated
that, from the experimental point of view, the graphene provides an effective medium for
mimicking relativistic quantum effects where; for instance, massless Dirac fermions allow
a close realization of Klein’s gedanken experiment whereas massive chiral fermions in bi-
layer graphene offer an interesting complementary system that elucidates the basic physics
involved. The point is that, in conventional two-dimensional systems, sufficiently strong
disorder results in electronic states that are separated by barriers with exponentially small
transmittance [26]. In contrast, in single- and bi-layer graphene materials all potential
barriers are relatively transparent (T (n, L) ≈ 1): the quasiparticles in graphene exhibit a
linear dispersion relation E = h̄kvf that corresponds to the pseudo-ultrarelativistic limit
of our analysis for pseudo-massless particles traveling with their Fermi velocity vf . In
this case there are pronounced transmission resonances where T approaches unity for some
particular geometric configurations, which does not allow charge carriers to be confined by
potential barriers that are smooth on atomic scale. Moreover, some authors have demonstrated
experimentally and theoretically that the biased graphene bi-layer is a tunable semiconductor
where the electronic gap can be controlled by the electric field effect reaching values as large
as 0.3 eV [30].
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To summarize, as previously pointed out, we have considered tunneling by a wave packet
obeying the Klein–Gordon equation, in a regime where the Compton wavelength of the particle
is much larger than the width of the barrier, assumed rectangular. Our standard analysis has
suggested the possibility of total transmission together with an accelerated tunneling. Once
it has been observed that the physical essence of the Klein paradox lies in the prediction
that particles can pass through large repulsive potentials without exponential damping
[13, 14], the scenario of the Klein paradox and accelerated tunneling transmission associated
with relativistic-like phenomena at nanoscopic scale can be tested experimentally using
graphene devices. In a subsequent study we intend to investigate the appearance of an
equivalent smaller effective mass value Meff � m due to the minimal coupling of the charged
particle magnetic momentum with an external magnetic field, in particular, for the massless
electron propagation in a single-layer graphene which could introduce some novel ingredients
for quantifying these peculiarities of the relativistic tunneling effect.
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